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A B S T R A C T   

Background: Alzheimer’s disease is a chronic neurodegenerative disease that destroys brain cells, causing irre-
versible degeneration of cognitive functions and dementia. Its causes are not yet fully understood, and there is no 
curative treatment. However, neuroimaging tools currently offer help in clinical diagnosis, and, recently, deep 
learning methods have rapidly become a key methodology applied to these tools. The reason is that they require 
little or no image preprocessing and can automatically infer an optimal representation of the data from raw 
images without requiring prior feature selection, resulting in a more objective and less biased process. However, 
training a reliable model is challenging due to the significant differences in brain image types. 
Methods: We aim to contribute to the research and study of Alzheimer’s disease through computer-aided diag-
nosis (CAD) by comparing different deep learning models. In this work, there are three main objectives: i) to 
present a fully automated deep-ensemble approach for dementia-level classification from brain images, ii) to 
compare different deep learning architectures to obtain the most suitable one for the task, and (iii) evaluate the 
robustness of the proposed strategy in a deep learning framework to detect Alzheimer’s disease and recognise 
different levels of dementia. The proposed approach is specifically designed to be potential support for clinical 
care based on patients’ brain images. 
Results: Our strategy was developed and tested on three MRI and one fMRI public datasets with heterogeneous 
characteristics. By performing a comprehensive analysis of binary classification (Alzheimer’s disease status or 
not) and multiclass classification (recognising different levels of dementia), the proposed approach can exceed 
state of the art in both tasks, reaching an accuracy of 98.51% in the binary case, and 98.67% in the multiclass 
case averaged over the four different data sets. 
Conclusion: We strongly believe that integrating the proposed deep-ensemble approach will result in robust and 
reliable CAD systems, considering the numerous cross-dataset experiments performed. Being tested on MRIs and 
fMRIs, our strategy can be easily extended to other imaging techniques. In conclusion, we found that our deep- 
ensemble strategy could be efficiently applied for this task with a considerable potential benefit for patient 
management.   

1. Introduction 

Alzheimer’s disease (AD) is an irreversible and chronic neurode-
generative disease and is the leading cause of dementia among the 
elderly [1]. It is estimated that 131 million people worldwide will suffer 
from AD and other dementias by 2050, presenting a significant health 
challenge in the 21st century [2]. In other words, 1 in 85 people will be 
diagnosed with Alzheimer’s disease. Slowing down the course of the 
illness by even one year could decrease eleven million cases worldwide, 
thus significantly mitigating its impact on the world. People suffering 

from AD will gradually lose cognitive functions, such as remembering or 
thinking, and will eventually lose the ability to perform daily activities. 
In the context of AD development, mild cognitive impairment (MCI) 
represents a slight decline in mental skills along the continuum from 
normal cognition to AD, while more than 33% of individuals with MCI 
will progress to AD within five or more years [2]. Typically, there are 
two subtypes of MCI: stable MCI (sMCI), which will not develop to AD, 
and progressive MCI (pMCI), which will progress to AD. 

Unfortunately, the cause and mechanism of AD are still not fully 
understood, and there is no curative treatment. However, the disease 
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progression can be slowed down through medication, exercise, and 
memory training [3]. On this subject, the early detection of AD and the 
accurate diagnosis of MCI are crucial to delay disease progression and 
improve the patient’s quality of life [4]. 

Since various neuroimaging tools, such as structural magnetic reso-
nance imaging (sMRI) [5], resting-state functional magnetic resonance 
imaging (rs-fMRI) [6], and positron emission tomography (PET) [7] can 
differentiate neuropathological changes associated with these diseases, 
they have been increasingly used for the clinical diagnosis of AD and 
MCI [8]. 

Computer-aided diagnosis (CAD) systems based on neuroimaging 
tools have opened up new avenues in Alzheimer’s research [9,10]. 
Neuroimaging has acquired a crucial role in diagnosing primary 
neurodegenerative diseases with magnetic resonance imaging (MRI), 
PET or Diffusion Tensor Imaging (DTI). These two techniques are used as 
biomarkers of the pathology and progression of Alzheimer’s disease 
(AD) and differentiate AD from other neurodegenerative disorders. In 
general, they can give essential insights into the study of brain science, 
providing enormous information on global and local brain features, 
which can assess disease status, identify crucial brain regions of AD, and 
reveal the mechanism of AD. Therefore, they can be used as the foun-
dation of CAD systems [9,10]. 

A CAD system is based on image analysis techniques, which we can 
distinguish between traditional and deep learning-based. The former 
uses a four-step pipeline: preprocessing, segmentation, feature extrac-
tion and classification. Image preprocessing prepares the image before 
analysing it to eliminate possible distortions or unnecessary data or 
highlight and enhance important features for further processing. Next, 
the segmentation step divides the significant regions into groups of 
pixels with shared characteristics such as colour, intensity, or texture 
extracted in the subsequent step. The purpose of segmentation is to 
simplify and change the image representation into something more 
meaningful and easier to analyse. The last step is classification, which 
consists of assigning a label to objects using supervised or unsupervised 
machine learning approaches. However, in recent years, deep learning 
workflows have emerged since the proposal of the AlexNet convolu-
tional neural network (CNN) in 2012 [11]. CNNs do not follow the 
typical image analysis workflow because they can extract features 
independently without the need for feature descriptors or specific 
feature extraction techniques. 

Deep learning algorithms differ from conventional machine learning 
methods. They require little or no image preprocessing and can auto-
matically infer an optimal data representation from raw images without 
requiring prior feature selection, resulting in a more objective and less 
biased process. Therefore, deep learning algorithms are better suited for 
detecting fine and diffuse anatomical abnormalities. Moreover, they 
achieved optimal results in many domains such as speech recognition 
tasks, computer vision and natural language understanding and, more 
recently, medical analysis, such as MRI [12], microscopy [13], CT [14], 
ultrasound [15], X-ray [16] and mammography [17]. These models 
showed notable results for organ and substructure segmentation, disease 
detection and classification in pathology, brain, lung, abdomen, breast, 
bone, and retina. 

Motivated by these properties and important results, we devise a 
contribution to the research and study of AD. In this work, we propose a 
comprehensive investigation on the problem of binary and multiclass 
classification of Alzheimer’s Disease from MR images from different 
perspectives:  

i). we trained several off-the-shelf CNN architectures on brain’s MRI 
to find the most suitable one in the analysis of Alzheimer’s 
patients;  

ii). we performed a binary classification task to detect if patients are 
healthy or have dementia on four public data sets: three 
composed of MRIs and one of fMRI;  

iii). we repeated the investigation on the same data sets to distinguish 
the different stages of dementia in a multiclass classification;  

iv). we explored the possibility of combining a deep learning 
approach with a machine learning one and proposed a deep- 
ensemble based solution;  

v). we investigated the robustness of the methods performing some 
cross-data sets experiments and evaluating the performance of 
the different systems. 

The overall aim of the work is to investigate either the behaviour of 
the main existing off-the-shelf CNNs and a deep ensemble-based strategy 
aimed at the realisation of a comprehensive CAD framework based on 
patient MRIs and fMRIs. For this reason, we have also realised a pre-
liminary methodology that seeks to offer a possible solution to the 
problem. 

We verified the robustness of the solution on the Open Access Series 
of Imaging Studies (OASIS), the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI), and the Alzheimer-MRI (KAGGLE) public data sets. 
Our proposed approach achieves excellent results in identifying AD and 
exhibits promising performance in evaluating disease status. 

The structure of the article is as follows. Sec. 1.1 presents a review of 
the machine and deep learning approaches for Alzheimer’s disease, 
while Sec. 2 describes the data sets, the CNNs and the ensemble used in 
our experiments and a detailed outline of our methodological study. The 
experimental results are illustrated in Sec. 3. In Sec. 4 we analyse and 
discuss the experimental results and, finally, we give the conclusions and 
the future works in Sec. 5. 

1.1. Related work 

Although research is still evolving, the automatic classification of 
Alzheimer’s disease has recently gained considerable attention. In this 
context, both traditional [18–20] and deep learning [21] approaches 
have been exploited. As the development of deep learning technology 
for neuroimaging data provides powerful tools to compute and analyse 
the brain network, many studies have exploited deep learning models to 
obtain AD-related features [22–29,29–34]. Existing works can be 
broadly divided into those oriented towards segmentation of brain parts 
or classification tasks [21]. We mainly focused this study on deep 
learning-based classification methods for detailed analysis of MRI tissue 
structures. 

1.1.1. Traditional machine learning methods 
Among the traditional machine learning approaches, Grey et al. [18] 

realised a multimodal classification method, based on imaging and 
biological information from the ADNI study, using the similarity mea-
sure generated by the random forest classifier. Zhang et al. [19] pro-
posed a multi-view classifier to take advantage of multiple views of data. 
Their experiments explored the correlation between the features and the 
label by constructing a latent representation. A feature selection method 
for joint regression and classification via discriminative sparse learning 
and relational regularisation were realised by Lei et al. [20] to predict 
clinical scoring and use multimodal features to classify AD stages. 

A traditional machine learning approach also requires a traditional 
image analysis procedure that uses a pipeline of four steps: pre-
processing, segmentation, feature extraction and classification. Never-
theless, deep learning workflows have emerged since the proposal of the 
convolutional neural network AlexNet in 2012 [11]. CNNs do not follow 
the typical image analysis workflow because they can extract features 
independently without the need for feature descriptors or specific 
feature extraction techniques. In specific tasks, including the subject of 
this study, the traditional methods are computationally intensive and 
depend mainly on handcrafted features, which are difficult to obtain. 

1.1.2. Deep learning methods 
Among the state-of-the-art methods in the field of AD classification, 
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most authors have analysed the entire brain content [22–33], while 
others have focused on the grey matter or hippocampus [35–38]. Data 
representation is realised by various biomarkers: MRI, PET, fMRI, DTI. 
Some works have also made use of a combination of these. Key methods 
employed are auto-encoder [22,23], CNN [24–33], Deep Belief Net-
works (DBP) [34] and Fully Connected Networks (FCN) [29]. 

The setting of whole-brain MRI images analysed with CNN strategies 
is the same as the one addressed in this work. In this particular setting, 
Lee et al. [30] adopted an AlexNet-based method, with a data permu-
tation scheme and an outlier removal approach, to perform both a bi-
nary classification of AD vs NC and a three-class classification between 
AD, NC, and MCI. An FCN was employed by Lian et al. [29], which 
achieved significant results, particularly in the pMCI vs sMCI classifi-
cation. On the other hand, Hosseini et al. [39] and Sarraf et al. [40] used 
full brain fMRI images. The former employed a pre-trained 3D-CNN with 
a 3D convolutional autoencoder on the MRI data, producing several 
binary classifications (AD + MCI vs NC, AD vs MCI, MCI vs NC) and a 
three-class classification (AD vs MCI vs NC). The latter classified AD data 
from normal control using the LeNet architecture. 

Some works [41–44] still employed a CNN strategy but based on a 
combination of whole-brain MRI and PET images. In this context, Feng 
et al. [43] implemented a deep learning network based on a 3D-CNN and 
Fully Stacked Bidirectional Long Short-Term Memory (FSBi-LSTM). 
Specifically, the image of each MRI or PET is transferred to the 3D-CNN 
network to extract features. In addition, FSBi-LSTM extracts high-level 
semantic and spatial information instead of the traditional FC layer. 
The aim is to use the multimodal data obtained from PET and MRI for AD 
diagnosis to address the binary classification problem of AD vs NC. 

Regarding autoencoder-based approaches, Siqi et al. [22] performed 
classifications between AD and NC and MCI vs NC using an auto-encoder 
followed by a soft-max classifier. In contrast, Shi et al. [23] used both 
MRI and PET to implement a multimodal stacked DPN (MM-SDPN) al-
gorithm for both binaries (AD vs NC, MCI-C vs MCI-NC, MCI vs NC) and 
multiclass (AD vs MCI-C vs MCI-NC vs NC) classification. 

Finally, the approach taken by Andres et al. [34] is significantly 
different from the previously described. They worked on a combination 
of grey and white matter areas taken from MRI and PET and imple-
mented a DBN that accepts 3D patches as input, further classified by an 
SVM. They aim to perform AD vs NC classification. 

2. Material and methods 

2.1. Data sets 

We now describe the different data sets used in our study. These data 
sets make biomarkers such as neuroimaging modalities, genetic and 
blood information, and clinical and cognitive assessments publicly 
available. OASIS [45,46] is a project aimed at freely distributing brain 
MRI data, including two comprehensive data sets. The sagittal data set 
includes MRI data of 416 subjects (young, middle-aged, non-demented, 
and demented older adults) aged 18 to 96. The longitudinal data set 
includes MRI data of 150 subjects (non-demented and demented older 
adults) aged 60 to 96. The second data set used is Alzheimer-MRI, 
available from the Kaggle online community [47]. The data set will 
henceforth be referred to as the KAGGLE data set. The ADNI [48] is 
distinguished by being a longitudinal and multicentre study. It is the 
most common data set in the literature, used in about 90% of studies 
alone or combination with others. More details on each data set are 
provided below. 

2.1.1. OASIS data set 
OASIS is composed of 416 MRIs of patients. For each patient, there 

are three or four T1-weighted MRIs. All subjects are right-handed and 
belong to both sexes. One hundred of the included subjects over 60 years 
of age were diagnosed with very mild to mild AD. The data set structure 
is quite complex, and the sections provided are both sagittal and axial. 

Each patient has several anatomical measurements from scans and the 
Clinical Dementia Rating (CDR), which indicates the level of dementia. 
All healthy patients (NC) have zero CDR, while patients with dementia 
(CDR > 0) are diagnosed with probable Alzheimer’s disease (CDR = 0.5 
for very mild dementia, CDR = 1 for mild dementia, and CDR = 2 for 
moderate dementia). The images have a resolution of 176 × 208. 
Further details are provided in Table 1. 

The following is a list of the images used in our experiment:  

● 1772 sagittal images, of which 1385 images are diagnosed as healthy 
and 387 with dementia (109 with mild dementia, 270 with very mild 
dementia and 8 with moderate dementia).  

● 457 axial images, of which 357 healthy and 100 with dementia (28 
with mild dementia, 70 with very mild dementia and 2 with mod-
erate dementia).  

● 2229 sagittal and axial images, of which 1742 healthy and 487 with 
dementia (137 with mild dementia, 340 with very mild dementia and 
10 with moderate dementia. 

Fig. 1 shows some examples of sagittal images. 

2.1.2. KAGGLE data set 
The KAGGLE data set consists of a total of 5121 axial images. Each 

image is labelled with the corresponding level of dementia: no dementia, 
very mild dementia, mild dementia and moderate dementia. The age of 
the patients is unknown, and no other data about them are provided. The 
data set includes 2560 healthy subjects and 2561 with dementia (1792 
with very mild dementia, 717 with mild dementia, 52 with moderate 
dementia). The images have a resolution of 176 × 208. Examples are 
shown in Fig. 2. No details on patient status were provided for this data 
set. 

2.1.3. ADNI data set 
ADNI is a project underway since 2004 to follow AD’s progress 

through its biomarkers to diagnose the disease in its early stages. 
Currently, ADNI is divided into three phases: ADNI1, ADNI GO/2 and 
ADNI3. ADNI registers participants aged 55–90 years among 57 sites in 
the United States and Canada. After giving consent, participants un-
dergo several initial tests repeated over time, such as clinical assessment, 
neuropsychological and genetic testing, lumbar puncture, MRI, and PET 
scans. For MRI scans, the scans are 1.5T and 3T. For our analysis, we 
chose ADNI-1 MRI and ADNI-2 functional MRI data sets, as following 
described. 

2.1.3.1. ADNI-1 MRI data set. Precisely, we exploited the ADNI1: 
Complete 3Yr.3T data set. Patients underwent screenings every six 
months for the first two years and another screening for the third year. 
The data set structure is as follows: 61 patients and 349 images, 127 
healthy and 222 with dementia (145 with mild dementia and 77 with 
Alzheimer’s). Other information is recorded for each patient, such as ID, 
screening date, gender, age, number of visits, and diagnosis (NC for 
Normal Control, i.e., no dementia; MCI for Mild Cognitive Impairment; 
and AD for Alzheimer’s disease). The images have a resolution of 256 ×
256. Some examples are shown in Fig. 3, and several details regarding 
the patients’ distribution are presented in Table 2. 

2.1.3.2. ADNI-2 fMRI data set. Regarding the functional MRI, we 

Table 1 
Description of the OASIS data set. VM-AD indicates very mild AD, Mi-AD refers 
to mild AD, while Mo-AD indicates moderate AD patients.   

NC VM-AD Mi-AD Mo-AD 

Number 316 70 28 2 
Ages (years) 75.9 ± 9.0 76.4 ± 7.0 77.2 ± 7.5 82 ± 5.7 
Sex (M/F) 119/197 39/31 19/9 1/1  
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exploited the rs-fMRI ADNI2 data set. In particular, it is composed of 
1534 patients and a total amount of 402 446 resting-state functional 
MRIs (rs-fMRI), of which we describe the patients’ distribution and 
status information in Table 3. Even in this case, the authors recorded 
additional information for each patient, such as ID, screening date, 
gender, age, number of visits and their diagnosis. The latter, in detail, 
are divided into the following six: NC for normal clinically; SMC for 
subjective memory concerns; EMCI for early mild cognitive impairment; 
LMCI for late mild cognitive impairment, and, finally, AD for mild 
Alzheimer’s disease dementia. The images have a resolution of 64 × 64. 
Some image samples are shown in Fig. 4. 

2.2. Convolutional neural networks 

This work is oriented towards the exploitation of deep learning ap-
proaches. In particular, we aimed to study several off-the-shelf con-
volutional neural networks both as classifiers and feature extractors, 
embedded in an ensemble context, to produce a baseline on several case 

Fig. 1. Examples of sagittal images in the OASIS data set: from left to right, MRI of patients with no dementia, very mild dementia, mild dementia and moder-
ate dementia. 

Fig. 2. Examples of axial images in the KAGGLE data set: from left to right, MRI of patients with no dementia, very mild dementia, mild dementia and moder-
ate dementia. 

Fig. 3. Examples of images in the ADNI data set: from left to right, MRI of patients without dementia, with mild cognitive impairment and with dementia.  

Table 2 
Description of the ADNI MRI data set. Data are provided by ADNI.   

NC sMCI pMCI AD 

Number 213 90 126 130 
Ages (years) 75.7 ± 5.0 74.9 ± 7.5 73.7 ± 7.0 74.1 ± 7.7 
Sex (M/F) 108/105 58/32 68/58 64/66  

Table 3 
Description of the ADNI-2 fMRI data set data set. Data are provided by ADNI.  

Class Number Ages (years) Sex (M/F) 

NC 433 75.49 ± 20.5 215/218 
EMCI 431 71.94 ± 19.06 261/170 
LMCI 354 72.47 ± 16.53 157/196 
MCI 50 78.89 ± 12.11 37/13 
SMC 68 72.35 ± 19.65 23/45 
AD 198 74.88 ± 14.11 119/79  
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studies concerning MRI and fMRI biomarkers. We evaluated the 
following architectures: AlexNet, ResNet-50, ResNet-101, GoogLeNet 
and Inception-ResNet-v2. They were all pre-trained on a well-known 
natural image data set (ImageNet [49]) and adapted to medical imag-
ing tasks, following an established procedure for transfer learning and 
CNN models [50] fine-tuning. AlexNet [11] is a simple eight layers ar-
chitecture. Nevertheless, it is frequently used for transfer learning and 
fine-tuning [50], since it offered excellent performance in many classi-
fication tasks [11]. The ResNet architectures are slightly more complex 
but, based on residual learning, they are easier to optimise even when 
the depth increases considerably [51]. They present 50 and 101 layers 
for ResNet-50 and ResNet-101, respectively. GoogLeNet [52] and 
Inception-ResNet-v2 [53] are both based on the Inception layer; indeed, 
Inception-ResNet-v2 is a variant of GoogLeNet. They differ in the 
number of layers, 100 and 164 for GoogLeNet and Inception-ResNet-v2, 
respectively. Regarding the transfer learning strategy, we followed the 
approach described in Ref. [50], keeping all CNN layers except the last 
fully connected one. We replaced it with a new layer, which was just 
initialised and set up to accommodate the new object categories. 

CNNs can also be used to replace traditional feature extractors, as 
they have a robust ability to extract complex features that describe the 
image in detail [54–57]. Therefore, we exploited them for classification 
and feature extraction. In particular, we extracted features from the 
penultimate fully connected layer (FC7) on AlexNet and the last (only 
one) on the ResNet and Inception architectures to produce the most 
refined features for the proposed ensemble strategy. 

2.3. Ensemble classifiers 

The ensemble strategies are broadly categorised into bagging, 
boosting, and stacking. In particular, the main idea of bagging [58], also 
known as bootstrap aggregation, is to generate a set of independent 
observations with the same size and distribution as the original data. 
The set of observations generates an ensemble predictor better than the 
single predictor generated on the original data. Bagging increases two 
steps in the original models: first, generating bagging samples and 

passing each bag of samples to the base models; second, combining the 
predictions of multiple predictors. The bagging samples can be gener-
ated with or without replacement. The combination of the output of the 
base predictors may vary as the majority voting is used for classification 
problems. In contrast, the averaging strategy is used in regression 
problems to generate the ensemble output. 

2.4. Evaluation metrics 

The measures used to quantify the performance of each classification 
model are accuracy, sensitivity, specificity and F-score. In detail, Ac-
curacy (Acc) is defined as the ratio of correctly labelled instances over 
the entire pool of cases; sensitivity (Sen), or true positive rate, or recall, 
is defined as the ratio of positives correctly identified by the prediction; 
specificity (Spec) measures the proportion of negative results that are 
correctly identified (also called the true negative rate); F-score is defined 
as the harmonic mean of precision and recall. Finally, since we are 
dealing with a multiclass imbalance problem, we also applied three of 
the most common global metrics for learning multiclass imbalance to 
evaluate the performance of the network [59]. The measures used are 
the macro geometric mean (MAvG), defined as the geometric mean of 
the partial accuracy of each class, the F-measure mean (MFM) and the 
macro arithmetic mean (MAvA) defined as the average of the partial 
accuracies of each class. 

2.5. Our methodology 

In this section, we describe our study. Specifically, it is a deep 
learning approach based on the transfer learning technique applied to 
several CNN architectures pre-trained on Imagenet [49]. We chose the 
networks based on their previous uses in the AD analysis domain, and 
their relative size/precision ratio. They are as follows: i). AlexNet [11]; 
ii). Inception-ResNet-v2 [53]; iii). the Residual Networks [51] 
ResNet-50 and ResNet-101; iv). GoogLeNet [52]. 

Finally, an ensemble of the best three trained networks has been 
proposed. Each of the most performing networks, after a fine-tuning 

Fig. 4. Examples of images in the ADNI-2 fMRI data set.  
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procedure, has been used to extract a feature vector we combined and 
classified by an ensemble bagged trees model, with an average strategy, 
without any feature selection procedure. Specifically, fine-tuned Alex-
Net, ResNet-101 and Inception-ResNet-v2 have been used in our 
ensemble classifier. The illustration of our proposed ensemble strategy is 
shown in Fig. 5. 

We conducted all the experiments on a single machine with the 
following configuration: Intel(R) Core(TM) i9-8950HK @ 2.90 GHz CPU 
with 32 GB RAM and NVIDIA GTX1050 Ti 4 GB GPU. The environment 
was MATLAB (ver. 2020b). The code, the models and the experiments 
are publicly available1. Each MRI data set has been divided into three 
subsets: one for training (training set), one for validation (validation set) 
and one for testing (test set), according to the following proportions: 
80%, 10%, 10%. Regarding the fMRI data set and considering its sheer 
number of images, we divided it with the following proportions: 30% for 
training, 20% for validation, and 50% for testing. In addition, to further 
facilitate reproducibility, the subdivisions were randomly selected with 
a fixed seed. To ensure the heterogeneity of the training set, we trained 
the ensemble classifier with stratified 10-fold cross-validation to ensure 
that every fold contained a representative ratio of each class. We 
selected the model with the largest area under the ROC curve (AUC) for 
each case. 

2.5.1. Settings and experiments on OASIS data set 
We used sagittal images from the RAW directory and axial images 

from the PROCESSED>MPRAGE>T88_111 directory. We performed two 
types of classification, a binary one, i.e., NC vs AD, and a multiclass one 
(NC, very mild AD, mild AD, moderate AD). The binary classification 
was done only on the sagittal sections, while the multiclass on both 
sagittal and axial sections. According to the CDR value, we produced the 
corresponding labels for each patient’s image. Patients without CDR 
were considered healthy. Regarding augmentation, the options for the 
training set and the validation set are as follows:  

● Random rotation between − 35◦ and 35◦;  
● Random x-scale between 0.5 and 4;  
● Random y-scale between 0.5 and 1;  
● Grey-scale preprocessing. 

The augmentation step applied to the training and validation set 
permit to realise a balanced data set. 

We tested all the networks mentioned above. The images have been 
resized for each CNN. The training options of the networks are not all 
fixed. After empirical evaluation, we chose ADAM as the solver in most 
experiments because its accuracy was better than that obtained with 
SGDM and RMSPROP. The only fixed parameters are the initial learning 
rate set to 0.000 1 and the validation frequency set to 30. The same 
values were also used for the other two data sets. The following section 
presents the experimental results for the three best-performing 

networks: AlexNet, ResNet-101 and Inception-ResNet-v2. The maximum 
number of epochs for the binary classification is 300 for AlexNet and 
ResNet-101 and 200 for Inception-ResNet-v2. The minibatch size is 128 
for AlexNet and 10 for the others. The maximum number of epochs for 
multiclass classification is 200 for sagittal sections, 70 for axial sections 
and 100 for both sections and all CNNs. The minibatch size is 128 for 
AlexNet, 16 for ResNet-101 and 10 for Inception-ResNet-v2 and all 
section types. Details on the data splits adopted are provided in Table 4. 

2.5.2. Settings and experiments on KAGGLE data set 
We performed both binary classification on the KAGGLE data set, i. 

e., NC vs AD, and multiclass classification (NC, very mild AD, mild AD, 
moderate AD) using the AlexNet, ResNet-101 Inception-ResNet-v2 net-
works. For both tasks, the maximum number of epochs is 200 for all 
networks. Regarding the minibatch size and the solver, they differ for 
each network. In fact, ADAM was chosen for AlexNet and Inception 
ResNetV2, while SGDM was chosen for ResNet-101; a minibatch size of 
128 was set for AlexNet, 10 for Inception-ResNet-v2 and 8 for ResNet- 
101. 

Regarding the multiclass classification, we followed two different 
approaches: one for AlexNet, which consists of the average accuracy of 
five trainings on different test sets with the same training options, and 
one for ResNet-101 and Inception-ResNet-v2, to test the relationship 
between the accuracy value and the minibatch size and the number of 
epochs, as well as to find the best combination of the two parameters 
leading to the best performance. 

We trained AlexNet for 200 epochs. Its accuracy no longer increased 
after then, while Inception-ResNet-v2 had a fixed minibatch size of 10 
and improved the results by progressively increasing the number of 

Fig. 5. Schematic representation of our proposed ensemble model.  

Table 4 
Training and testing set characteristics of the patients employed for the exper-
iments performed on OASIS data set. NC indicates normal control, VM-AD in-
dicates very mild AD, Mi-AD refers to mild AD, while Mo-AD indicates moderate 
AD patients.  

Set NC VM-AD Mi-AD Mo-AD 

Data set 316 70 28 2 
Training set 252 56 22 0 
Validation set 32 7 3 0 
Test set 32 7 3 2  

Table 5 
Training and testing set characteristics of the patients employed for the exper-
iments performed on the KAGGLE data set. ND, vmD, miD, and moD indicates no 
dementia, very mild dementia, mild dementia and moderate dementia, 
respectively.  

Set NC vmD miD moD 

Data set 2560 1792 717 52 
Training set 2048 1434 573 42 
Validation set 256 179 72 5 
Test set 256 179 72 5  1 https://github.com/andrealoddo/AD_classification. 
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epochs: 30, 50, 70, 100. On the other hand, for ResNet-101, we used 
different experiments: we fixed the number of epochs and progressively 
reduced the minibatch size. The minibatch sizes used with the ResNet- 
101 were: 16, 8, 4, 2, while the number of epochs was 200, when the 
accuracy stopped improving. Finally, the augmentation options on the 
KAGGLE data set were the same as those on the OASIS data set, 
described in Sec. 2.5.1. Even in this case, the augmentation step permits 
to realise a balanced data set. Further details regarding the patients’ 
distributions of the different sets are provided in Table 5. 

2.5.3. Settings and experiments on ADNI data set 
Also, on the ADNI data set, we performed both binary classification, 

i.e., NC vs AD, and multiclass classification (NC, MCI, AD). We used five 
networks for this experiment: AlexNet, ResNet-50, ResNet-101, 
Inception-ResNet-v2, and GoogLeNet. For both tasks, the maximum 
number of epochs is 200 for all networks. The minibatch is 128 for 
AlexNet and GoogLeNet, 10 for ResNet-101 and ResNetInceptionV2, and 
30 for ResNet-50. Given the small size of the data set, we applied an 
augmentation to double the number of images, as described below:  

● Random rotation between − 35◦ and 35◦;  
● Random x-scale between 0.5 and 4;  
● Random y-scale between 0.5 and 1;  
● Grey-scale preprocessing. 

The patients’ data sets details produced, without the augmentation 
step, are described in Table 6. 

2.5.4. Settings and experiments on ADNI fMRI data set 
Further experimentation was conducted on a data set composed of 

resting-state functional MRIs. The original data set is composed of six 
different classes, as described in Section2.1.3: NC, EMCI, LMCI, MCI, 
SMC, and AD. In this experiment, we grouped all the classes related to 
the cognitive impairment status, making it a three-class classification 
between NC, MCI, and AD. We used five networks for this experiment: 
AlexNet, ResNet-50, ResNet-101, Inception-ResNet-v2, and GoogLeNet. 
Unlike the previous, we adopted a maximum of 30 epochs due to the 
huge number of images available. For the same reason, the split adopted 
were the following: 30% of the images for training, 20% for validation, 
and 50% for testing. However, to maintain fairness and consistency 
concerning the previous experiments, we kept only the images with a 
single scan and removed all the others. More specifically, we removed 
all the motion correcting series and the perfusion Weighted because they 
contain more than one scan per image. Finally, we converted all the 
images from DCM to JPG format. The final setting of the image 
composition is described in Table 7. 

2.5.5. Cross-data set settings and experiment 
The models obtained by transfer learning on the KAGGLE data set 

were also used for another experiment: a refined fine-tuning on OASIS 
and a test on OASIS itself. This experiment aimed to see how networks 
that had already learned features from brain MRIs would behave on new 
MRIs belonging to a different data set. The objective was first to improve 
the overall classification accuracy and, second, to show the robustness 
and validity of our approach in a cross-data set scenario. 

As mentioned in Sec. 2.5.2, the KAGGLE data set only provides axial 
sections, whereas OASIS provides both sagittal and axial images. 
Therefore, models trained on KAGGLE should perform better on the 
axial sections of OASIS, as they are prepared with the most similar im-
ages. However, experimentation was also carried out on sagittal sec-
tions, thus using all the images of the OASIS data set. Binary 
classification, however, was only done on the sagittal views of the data 
set. The networks are again AlexNet, ResNet-101 and Inception-ResNet- 
v2. Regarding the training parameters, the maximum number of epochs 
for the binary task is 300 for all networks. The minibatch size is 128 for 
AlexNet and 10 for the others. 

For multiclass classification, the maximum number of epochs is 200 
for sagittal sections, 70 for axial sections and 100 for both sections and 
all CNNs. The minibatch size is 128 for AlexNet, 16 for ResNet-101 and 
10 for Inception-ResNet-v2 and all section types. 

3. Results and analysis 

This section aims to present the experimental results and compare 
them with some relevant studies available in the literature. We order the 
different approaches for the detection of AD considering the main as-
pects on which they are based: in terms of input, type of biomarkers 
used, some details about the data set, which deep learning technique 
was employed, and, finally, which performance measures were calcu-
lated for the evaluation. 

Considering all the studies presented, we can group the approaches 
to input data management into four different categories, depending on 
the type of features extracted: voxel-based, slice-based, patch-based, and 
ROI- based. Concerning biomarkers, the most prevalent type of neuro-
imaging modality used is MRI. However, several studies considered PET 
and fMRI as equally discriminating. Some studies have considered other 
aspects such as age, gender, education level, speech pattern, EEG, retinal 
abnormalities, postural kinematic analysis, cerebrospinal fluid bio-
markers, and neuropsychological measures as possibly relevant for AD 
detection. 

The main algorithms of deep learning techniques are AEs, DNNs, 
DBNs, and 2D/3D CNNs, as introduced in Sec. 1.1. 

One of the main problems encountered when comparing our study 
with others concerns the availability of clear data sets and training 
procedures. We selected work in which the authors employed public 
data sets, i.e., OASIS or ADNI. To the best of our knowledge, there are no 
publicly presented results yet regarding the KAGGLE data set. However, 
most of the studies in the literature did not submit their source code to 
any hosting platform for software development or to online competition. 
Moreover, they did not specify some essential aspects in the experi-
ments: which type of section they chose, whether axial or sagittal, which 
images of the data set they selected, details about the training proced-
ures, i.e., the values of the training parameters. Therefore, it is not easy 
to compare studies impartially with each other. Consequently, we can 
consider the performance measures reported for each approach, usually 
accuracy and, in some cases, specificity and sensitivity. Even for studies 
on the same data set and with the same number of subjects, the results 
may still not be comparable because different subjects may be used as 
training sets and test sets. Many studies address the NC vs AD problem 
because it helps other classification tasks, especially in understanding 
early signs of AD. But the most important and main challenge in AD 
assessment is determining whether someone has MCI or not and pre-
dicting whether an MCI patient will develop the disease. Therefore, we 

Table 6 
Training and testing set characteristics of the patients employed for the exper-
iments performed on the ADNI MRI data set.  

Set NC sMCI pMCI AD 

Data set 213 90 126 130 
Training set 170 72 100 104 
Validation set 21 9 13 13 
Test set 22 9 13 13  

Table 7 
Training and testing set characteristics of the patients employed for the exper-
iments performed on the ADNI fMRI data set.  

Set NC MCI AD 

Data set 27 68 20 
Training set 8 20 6 
Validation set 6 14 4 
Test set 13 34 10  
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also considered studies working on AD, MCI and NC. Our search includes 
all the images present in each data set considered. If several sections are 
available, we analyse them all, either separately or by combining them. 

3.1. Results for OASIS data set 

In Table 8 and Table 9, we present numerical results for the binary 
and multiclassification task on the OASIS data set, respectively. The 
tables include our results and those of the literature. For each approach, 
we indicate the reference number, the type of input and biomarkers, 
some details about the data set, the deep learning technique and the 
values of the performance measures, where reported. 

Overall, all three networks gave satisfactory results. In particular, 
AlexNet performed best in the sagittal imaging scenario, achieving 

99.44% and 100% accuracy in binary and multiclass classification, 
respectively. It also outperformed the state-of-the-art in the remaining 
metrics, particularly in the multiclass experiments. Inception-ResNet-v2 
achieved the highest accuracy for axial images, i.e., 91.30%, out-
performing the other two networks tested for all metrics. However, this 
classification seems to be the most critical image configuration because 
all metrics are critically lower than the sagittal image scenario, e.g., 
AlexNet achieved a minimum sensitivity of 48.68%. The combination of 
axial and sagittal images did not produce any improvement in results. In 
particular, Table 9 shows that no network managed to achieve a 
maximum score for all metrics, in contrast to the two previous case 
studies. In this case, the deep-ensemble strategy is preferable consid-
ering that it obtained 98.24% accuracy, outperforming the remaining 
networks. Multiclass classification on axial sections achieved relatively 

Table 8 
Results on OASIS data set on NC vs AD classification.  

Work Input Data set details Method Acc Sen Spe F- 
score 

[60] Slice-based (MRI) 416 subjects. Train 200. (sagittal) 2D CNN based on the VGG16 74.12 – – – 
[60] Slice-based (MRI) ” InceptionV4 96.25 – – – 
[60] Slice-based (MRI) ” VGG16 92.30 – – – 
[61] Voxel-based 

(MRI) 
98 subjects including 49 AD and 49 NC. Voxel-based DBN 92.16 90.59 93.36 – 

[62] Slice-based (MRI) 95 subjects including 51 AD and 44 NC (only right-handed 
subjects) 

Stacked sparse AEs and a softmax layer with 
fine tuning 

91.60 98.09 84.09 – 

[63] Slice-based (MRI) 80 subjects including 40 AD and 40 NC. Several scans for 
each subject. 

2D CNN 85.00 90.00 80.00 – 

[64] Slice-based (MRI) 196 subjects including 98 AD and 98 NC from OASIS +
local data 

2D CNN 97.65 97.96 97.35 – 

[65] Slice-based (3D 
MRI) 

382 subjects including 167 NC, 87 very mild AD, 105 mild 
AD, 23 AD. 

AlexNet 89.66 100.0 82.0 – 

This Slice-based (MRI) 1772 sagittal images including 387 AD and 1385 NC AlexNet 99.44 98.75 99.64 99.19 
This Slice-based (MRI) ” ResNet-101 97.74 95.97 97.63 96.80 
This Slice-based (MRI) ” Inception-ResNet-v2 98.31 97.14 97.99 97.56 
This Slice-based (MRI) ” Deep-Ensemble 98.51 97.57 98.42 97.85  

Table 9 
Results on OASIS data set and multiclass classification (NC, very mild AD, mild AD, moderate AD.).  

Work Input Data set details Method Acc Sen Spe MAvG MFM MAvA 

[66] Slice based 
(MRI) 

416 subjects with axial scans 2D CNN inspired by Inception-V4 73.75 – – – – – 

[67] Slice based 
(MRI) 

416 subjects with axial scans Ensemble of three DenseNet networks 93.18 93.00 – – – – 

[68] Slice based 
(MRI) 

416 subjects with axial scans 2D CNN model for each view with the 
majority voting strategy (Inception V4 
-ResNet) 

93.18 93.00 – – – – 

[65] Slice based 
(MRI) 

382 subjects including 167 NC, 87 very mild AD, 
105 mild AD and 23 AD 

AlexNet 92.85 92.85 74.27 – – – 

[69] Slice based 
(MRI) 

382 subjects including 167 NC, 87 very mild AD, 
105 mild AD and 23 AD 

Siamese convolutional neural network 
inspired by VGG16 

99.05 – – – – – 

This Slice based 
(MRI) 

1772 sagittal images including 1385 NC, 270 
very mild AD, 109 mild AD and 8 moderate AD 

AlexNet 100 100 100 100 100 100 

This Slice based 
(MRI) 

” ResNet-101 97.74 96.77 99.28 99.27 97.91 99.28 

This Slice based 
(MRI) 

” Inception-ResNet-v2 88.70 82.07 84.26 86.78 80.64 84.26 

This Slice based 
(MRI) 

457 axial images including 357 NC, 70 very mild 
AD, 28 mild AD and 2 moderate AD 

AlexNet 78.26 48.68 88.89 78.26 78.26 48.68 

This Slice based 
(MRI) 

” ResNet-101 82.61 68.43 77.25 72.49 65.77 77.25 

This Slice based 
(MRI) 

” Inception-ResNet-v2 91.30 87.94 82.28 81.42 83.59 82.28 

This Slice based 
(MRI) 

2229 sagittal and axial images including 1742 
NC. 340 very mild AD. 137 mild AD and 10 
moderate AD 

AlexNet 94.17 87.33 88.59 91.13 87.92 88.59 

This Slice based 
(MRI) 

” ResNet-101 90.58 83.60 90.15 89.90 86.37 90.15 

This Slice based 
(MRI) 

” Inception-ResNet-v2 92.83 92.09 89.95 89.22 89.95 89.95 

This Slice based 
(MRI) 

” Deep-Ensemble 98.24 93.05 97.31 94.24 96.38 96.14  
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low sensitivity values, especially with AlexNet and ResNet-101, which 
classified healthy cases more accurately. Finally, the sensitivity and 
specificity values obtained are generally high (mainly in the range of 
90–100%), indicating that the models produced are equally effective in 
recognising positive and negative cases, except in the axial imaging 
scenario. 

3.2. Results for KAGGLE data set 

In Tables 10 and 11, we present the numerical results for the binary 
and multiclassification task on the KAGGLE data set, respectively. 

We achieved the best results with the ResNet-101 network for binary 
classification, with an accuracy of 96.09%, which also shows high 
specificity and sensitivity. In contrast, the other networks appear less 
stable concerning the experiments on the OASIS data set. About multi-
class classification, ResNet-101 confirmed and improved on the results 
obtained in the binary case. It outperformed both AlexNet and 
Inception-ResNet-v2 in every single metric. 

However, the deep-ensemble strategy is the most performing in both 
cases, obtaining 96.57% and 97.71% accuracy in binary and multiclass 
cases. 

3.3. Results for ADNI data set 

In Tables 12 and 13, we present the numerical results for the binary 
and the multiclassification task on the ADNI data set, respectively. 

Regarding the binary classification, we obtained values of 100% for 
each metric using ResNet-50. In general, every network tested showed 
good classification results, except for AlexNet, which could not even 
reach the 90% threshold for any metric. ResNet-101 again showed the 
best results for multiclass classification on sagittal sections, with 100% 
in every metric, followed by GoogLeNet (97.14% overall accuracy) and 
AlexNet (94.29%). In contrast to the binary classification, ResNet-50 
was the only network with an accuracy of less than 90%. Its perfor-
mance was generally lower than the binary classification and the rest of 
the networks used in the multiclass experiment. 

Even in this case, our deep-ensemble strategy showed the highest 
results in every metric, obtaining 99.74% and 99.22% accuracy in the 
two cases. 

3.4. Results for ADNI fMRI data set 

In this work, we aimed at finding a method that could be adaptable 
for heterogeneous biomarkers. Therefore, we exploited the off-the-shelf 
CNNs that produced the best performance in the MRI cases for the ADNI 

Table 10 
Results on the KAGGLE data set for NC vs AD classification.  

Work Input Data set details Method Acc Sen Spe F-score 

This Slice-based (MRI) 5121 axial images including 2560 NC and 2561 AD AlexNet 89.65 89.79 89.65 89.72 
This Slice-based (MRI) ” ResNet-101 96.09 96.11 96.09 96.10 
This Slice-based (MRI) ” Inception-ResNet-v2 91.21 91.44 91.21 91.32 
This Slice-based (MRI) ” Deep-Ensemble 96.57 96.57 98.28 96.57  

Table 11 
Results on the KAGGLE data set for multiclass classification (NC vs very mild AD vs mild AD vs moderate AD).  

Work Input Data set details Method Acc Sen Spe MAvG MFM MAvA 

This Slice-based 
(MRI) 

5121 axial images including 2560 NC, 1792 very mild AD, 717 mild AD, 
and 52 moderate AD 

AlexNet 89.26 90.58 81.66 80.54 84.83 81.66 

This Slice-based 
(MRI) 

” ResNet-101 96.48 97.78 96.78 96.74 97.26 96.78 

This Slice-based 
(MRI) 

” Inception- 
ResNet-v2 

89.65 90.11 85.64 88.45 87.39 85.64 

This Slice-based 
(MRI) 

” Deep-Ensemble 97.71 96.67 98.22 96.41 95.98 96.40  

Table 12 
Results on the ADNI data set for NC vs AD classification and comparison with the state-of-the-art.  

Work Input Data set details Method Acc Sen Spe F- 
score 

[70] ROI-based (MRI) 311 subjects including 65 AD, 67 MCIc, 102 MCInc, 
and 77 NC 

Stacked sparse AEs and a softmax layer 88.16 88.57 87.22 – 

[41] Voxel and Patch-based 
(MRI, PET) 

398 subjects including 93 AD, 204 MCI and 101 NC Multi-modal DBM with SVM 95.35 95.05 95.22 – 

[71] ROI-based (MRI, PET) 311 subjects including 65 AD, 67 MCIc, 102 MCInc 
and 77 NC 

Stacked sparse AEs and a softmax layer 91.4 92.32 90.42 – 

[72] Voxel-based (MRI) 1728 subjects including 346 AD, 358 LMCI, 450 
MCI, and 574 NC 

3D CNN based on ResNet with a lower 
number of layers 

94.00 – – – 

[23] ROI-based (MRI, PET) 202 subjects including 51 AD, 43 MCIc, 56 MCInc, 
and 52 NC 

Multi-modal stacked DPN and a linear 
kernel SVM 

97.13 96.33 98.53 – 

[73] Voxel-based (MRI) 825 subjects including 407 NC and 418 AD 3D CNN 99.20 98.90 99.50 – 
[74] ROI-based (MRI) 818 subiects including 188 AD. 229 NC. 401 MCI 2.5D CNN 79.90 84.00 74.80 – 
[40] Slice-based (functional MRI) 43 subjects including 28 AD and 15 NC LeNet-5 96.85 – – – 
This Slice-based (MRI) 349 subjects including 77 AD. 145 MCI. 127 NC AlexNet 85.71 84.87 87.06 85.95 
This ” ” ResNet-101 97.14 97.83 96.15 96.98 
This ” ” Inception-ResNet-v2 97.14 96.43 97.73 97.07 
This ” ” ResNet-50 99.34 98.73 99.40 99.03 
This ” ” GoogLeNet 94.29 93.88 93.88 93.88 
This ” ” Deep-Ensemble 99.74 99.36 99.89 99.55  
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fMRI data set. In general, regarding the fMRI biomarkers and as reported 
in Tables 14 and 15, the tested off-the-shelf networks produced lower 
performance than MRI data set experimentations. Specifically, in the 
binary case, no network outperforms the state-of-the-art. At the same 
time, our ensemble proposal can reach 98.3% accuracy, exceeding both 
Sarraf et al.works [40,89] which, in any case, exploited only a portion of 
the same ADNI fMRI data set considered in this work. Also, as reported 
in Fig. 6, the AD class reached 97.0% accuracy, with a reduced error 
margin. In this case, the MCI class is undoubtedly the most difficult to 
classify, having 89.4% accuracy. This problem is certainly due to the 
heterogeneity of the four different MCI classes considered as grouped 
inside this class. Finally, as it can be seen from Fig. 7, the ROC curve 
performance of the deep-ensemble model reached 99%. 

3.5. Cross-data sets results 

In the second experiment on the KAGGLE data set, we fine-tuned the 
produced KAGGLE models, as described in Sec. 2.5.5. In detail, we used 
them to perform a fine-tuning strategy on a 10% portion of the OASIS 
data set. The validation set was another 10%, while we used the 
remaining 80% portion as the test set. The results for the binary task on 
the OASIS sagittal images are given in Table 16, while Table 17 gives the 
results for the multiclass task. 

Concerning binary classification for sagittal images, the results ob-
tained were no better than the previous ones, although generally good 
and above 90%. The best performing network was AlexNet, with an 
accuracy of 98.87%, a sensitivity of 99.29% and an F-score of 98.35%. 
However, Inception-ResNet-v2 was found to have the best specificity at 
98.56%. For multiclass classification on sagittal sections, ResNet-101 

Table 13 
Results on the ADNI data set for multiclass classification (NC vs MCI vs AD).  

Work Input Data set details Method Acc Sen Spe MAvG MFM MAvA 

[71] ROI-based 
(MRI) 

311 subjects including 65 AD, 169 MCI and 77 NC Stacked sparse AEs and a 
softmax regression layer 

59.19 51.38 84.36 – – – 

[39] Voxel-based 
(MRI) 

CADDementia + ADNI, 210 subjects including 70 AD, 70 
MCI, and 70 NC 

3D CNN pre-trained with 
stacked 3D convolutional AEs 

89.10 – – – – – 

[75] Slice-based 
(MRI) 

900 subjects including 300 AD, 300 MCI and 300 NC 2D CNN based on the VGGNet- 
16 

92.25 – – – – – 

[39] Voxel- based 
(MRI) 

CADDementia + ADNI, CADDementia: 30 subjects for 
pre-training. ADNI: 210 subjects including 70 AD, 70 
MCI and 70 NC 

3D CNN pre-trained with 
stacked 3D convolutional AEs 

94.80 – – – – – 

[76] Slice-based 
(MRI) 

660 images including 188 AD, 243 MCI and 229 NC A 2D CNN based on ResNet-18 56.80 – – – – – 

[77] ROI-based 
(MRI, PET, 
Genetic Data) 

805 subjects including 190 AD, 389 MCI and 226 NC 
subjects. All the subjects have MRI data, while only 736 
subjects have genetic data and 360 subjects have PET 
data. 

Novel three-stage deep feature 
learning and fusion framework 
using DNN 

64.40 – – – – – 

[78] ROI-based 
(MRI, PET, 
Genetic Data) 

805 subjects including 186 AD, 393 MCI, and 226 NC Multi-task deep neural network 
with a softmax layer 

65.80 – – – – – 

[79] Slice-based 
(MRI) 

504 subjects including 101 AD, 234 MCI, and 169 NC 2D CNN 96.00 96.00 98.00 – – – 

[80] ROI-based 
(MRI) 

ADNI + CADDementia - 504 subjects including 101 AD, 
232 MCI, and 171 NC 

Stacked AEs and a softmax layer 56.80 – – – – – 

[81] ROI-based 
(MRI) 

694 subjects (~2 scans per subject) including 272 AD, 
726 MCI, and 379 NC 

Deep supervised feature 
extraction approach using 
General Stochastic Networks 

79.40 – – – – – 

[72] Voxel-based 
(MRI) 

1728 subjects including 346 AD. 358 LMCI. 450 MCI, 
and 574 NC 

3D CNN based on ResNet with a 
lower number of layers 

87.00 – – – – – 

[82] Voxel-based 
(MRI, FDG, 
PET) 

615 images including 193 AD, 215 MCI, and 207 NC 3D VGGNet-16 pre-trained by 
an AE 

91.13 – – – – – 

[83] Voxel-based 
(MRI, age, 
gender) 

841 subjects including 200 AD, 411 MCI, and 230 NC 3D CNN with transfer learning 61.10 63.00 – – – – 

[36] ROI-based 
(MRI, DTI) 

531 subjects including 53 AD, 228 MCI, and 250 NC 3D Inception-based CNN for 
each region 

68.90 – – – – – 

[84] Slice-based 
(MRI-GM) 

321 subjects including 150 AD, 129 MCI, and 112 NC. 
Total of 3744 scans 

3D CNN based on VGGNet 91.32 – – – – – 

[85] Voxel-based 
(MRI) 

ADNI + AIBL (2464 subjects with 20 060 scans) 3D CNN with 3 different filter 
size in its first convolutional 
layer 

60.20 – – – – – 

[86] ROI-based 
(MRI, PET, 
Genetic Data) 

805 subjects including 190 AD, 389 MCI, and 226 NC 
subjects. All the subjects have MRI data. while only 736 
subjects have genetic data. and 360 subjects have PET 
data. 

Novel three-stage deep feature 
learning and fusion framework 
using DNN 

64.40 – – – – – 

[87] Slice-based 
(MRI) 

150 subjects including 50 AD, 50 MCI, and 50 NC 2D inspired by VGGNet-16 95.73 – – – – – 

[88] Voxel- based 
(MRI) 

833 subjects including 221 AD, 297 MCI, and 315 NC Ensemble of 3D DenseNets 97.52 – – – – – 

This Slice-based 
(MRI) 

349 subjects including 77 AD, 145 MCI, 127 NC AlexNet 94.29 95.24 93.45 93.31 94.16 93.45 

This ” ” ResNet-101 100 100 100 100 100 100 
This ” ” Inception-ResNet-v2 91.43 94.12 87.5 85.5 89.08 87.5 
This ” ” ResNet-50 85.71 87.39 84.52 83.84 84.89 84.52 
This ” ” GoogLeNet 97.14 96.3 97.44 97.37 96.71 97.44 
This ” ” Deep-Ensemble 99.22 97.53 99.20 98.36 98.81 98.33  
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achieved higher overall accuracy and sensitivity than standard ResNet- 
101, with 98.31% and 97.46%, respectively. However, AlexNet ach-
ieved the best results in these image settings, even for multiclass metrics, 
showing excellent classification ability for each class. For axial sections, 
the accuracy exceeded standard transfer learning with AlexNet and 
ResNet-101 with SGDM solver, while they were lower for ResNet-101 
with ADAM solver and KAGGLE-trained Inception-ResNet-v2. Overall, 
AlexNet and Inception-ResNet-v2 achieved the best accuracy, sensi-
tivity, F-score and MAvG, and specificity, MFM and MAvA, respectively. 
It becomes more evident that axial section images alone are not the most 
appropriate for the classification tasks in this scenario. When consid-
ering the combination of sagittal and axial sections, we obtained 
outstanding results with both AlexNet and Inception-ResNet-v2, with 
some differences on each side. In detail, AlexNet showed higher sensi-
tivity and F-score values, while Inception-ResNet-v2 showed a higher 
overall accuracy of 95.07% and the highest multiclass specificity and 
accuracy values. 

Despite the promising results produced by the fine-tuned CNNs, our 
deep-ensemble strategy outperforms the remaining methods even in this 
case, achieving an accuracy of 99.29% in the binary case and 96.02% in 
the multiclass one. Also, as reported in Table 9, the AD class reached 
99.4% accuracy, with a low error margin. As shown in Fig. 8, the MCI 
class appeared the most difficult to classify in this scenario, considering 
its 92.7% accuracy, probably due to the differences in the images of the 
two data sets. Finally, from Fig. 9, we can see that the ROC curve per-
formance of the presented deep-ensemble strategy reached 99%. 

4. Discussion 

This work aimed to explore the use of deep learning techniques to 
diagnose AD. More specifically, to investigate the possibility of using 
convolutional neural networks to detect AD disease and differentiate 
different degrees of dementia from MRI or fMRI images. We used four 
public data sets for our study and compared our results with state of art. 

In particular, the first objective was to train the networks for binary 
classification, i.e., to distinguish between healthy and dementia images. 
We best achieved this goal with AlexNet, ResNet-101, and ResNet-50 
architectures, which reached an accuracy of 99.44% on the OASIS 
data set; 96.09% on the KAGGLE, and 100% on the ADNI, respectively. A 
second objective was to identify a network capable of classifying the 
stages of dementia. This goal was also achieved, with 100% accuracy by 
AlexNet for the four-class classification task on the sagittal sections of 
the OASIS data set; by ResNet-101, for the three-class classification on 
the ADNI data set with 100% accuracy; and the four-class classification 
on the KAGGLE data set with 96.48% accuracy. 

Considering the results achieved by the off-the-shelf CNNs, we 

Table 14 
Results on the ADNI fMRI data set for the binary classification (AD vs NC).  

Work Input Data set 
details 

Method Acc Sen Spe F- 
score 

[40] Slice- 
based 
(fMRI) 

43 subjects 
including 
28 AD and 
15 NC 

LeNet-5 96.85 – – – 

[89] Slice- 
based 
(fMRI) 

43 subjects 
including 
28 AD and 
15 NC 

LeNet-5 96.85 – – – 

This Slice- 
based 
(fMRI) 

47 subjects 
including 
20 AD and 
27 NC 

AlexNet 80.8 61.5 100.0 76.2 

This Slice- 
based 
(fMRI) 

” ResNet- 
101 

76.9 79.5 75.6 77.5 

This Slice- 
based 
(fMRI) 

” Inception- 
ResNet-v2 

82.0 66.7 96.3 78.8 

This Slice- 
based 
(fMRI) 

” Deep- 
Ensemble 

98.3 96.0 95.9 95.9  

Table 15 
Results on the ADNI fMRI data set for the multiclass classification (NC vs MCI vs AD).  

Work Input Data set details Method Acc Sen Spe MAvG MFM MAvA 

This Slice-based (fMRI) 115 subjects including 27 NC, 68 MCI and 20 AD AlexNet 78.26 81.67 82.50 81.32 80.39 81.67 
This Slice-based (fMRI) ” ResNet-101 82.61 87.08 81.28 88.78 86.14 87.09 
This Slice-based (fMRI) ” Inception-ResNet-v2 86.96 91.67 85.56 84.97 90.67 91.67 
This Slice-based (fMRI) ” Deep-Ensemble 98.16 96.49 98.62 97.52 96.97 97.53  

Fig. 6. Multiclass classification confusion matrix on the ADNI fMRI data set 
(NC vs MCI vs AD). 

Fig. 7. ROC curve for our deep-ensemble strategy on the cross-data set multi-
class experiment. 
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explored the possibility of combining deep learning features with a 
machine learning approach. Therefore, we proposed a deep-ensemble 
based solution, which reached outstanding performance in the previ-
ous three experiments, outperforming the networks in all cases, except 
for OASIS one. 

Moreover, we carried out cross-data sets experiments, which allowed 
us to further validate our results. On the one hand, it was possible to 
compare the performance of the models trained on KAGGLE and OASIS. 
On the other hand, it was possible to validate the results of the OASIS 
models by comparing them with the KAGGLE models on the same data 
set. 

The models trained on the KAGGLE data set performed equally well 
on OASIS, achieving excellent accuracies, such as 98.7% (AlexNet, for 

binary classification), 98.31% (ResNet-101, for multiclass classification 
- sagittal section), 95.07% (Inception-ResNet-v2, for multiclass classifi-
cation - sagittal and axial sections combined). In general, the networks 
trained on OASIS were better than the networks trained on KAGGLE and 
tested on OASIS. However, the accuracies achieved by both models are 
mostly above 90%. Even in this context, our deep-ensemble proposal 
obtained the highest results. 

Thus, the validation of the results showed the validity of the trained 
models and the deep-ensemble by applying them to data sets other than 
the training data set and resulted in extremely high accuracies. 

Table 16 
Cross-data set (training on KAGGLE, fine-tuning and testing on OASIS) results for NC vs AD classification.  

Work Input Data set details Method Acc Sen Spe F-score 

This Slice-based (MRI) OASIS 1772 sagittal images including 1385 NC and 387 AD AlexNet 98.87 99.29 97.44 98.35 
This Slice-based (MRI) ” ResNet-101 98.31 97.96 97.07 97.52 
This Slice-based (MRI) ” Inception-ResNet-v2 98.31 97.37 98.56 97.96 
This Slice-based (MRI) ” Deep-Ensemble 99.29 98.34 99.55 98.94  

Table 17 
Cross-data set (training on KAGGLE, fine-tuning and testing on OASIS) results for multiclass classification.  

Input Data set details Method Acc Sen Spe F- 
score 

MAvG MFM MAvA 

Slice-based 
(MRI) 

1772 OASIS sagittal images including 1385 NC, 270 very mild AD, 109 
mild AD, and 8 moderate AD 

AlexNet 97.18 95.31 97.8 96.54 97.79 96.47 97.8 

Slice-based 
(MRI) 

” ResNet-101 98.31 97.46 91.67 94.48 90.86 93.93 91.67 

Slice-based 
(MRI) 

” Inception- 
ResNet-v2 

77.97 78.41 78.41 78.41 88.32 78.41 33.33 

Slice-based 
(MRI) 

457 OASIS axial images including 357 NC. 70 very mild AD. 28 mild AD 
and 2 moderate AD 

AlexNet 84.78 84.78 51.46 68.12 82.21 51.21 51.46 

Slice-based 
(MRI) 

” ResNet-101 80.44 72.22 48.28 57.87 35.91 53.25 48.28 

Slice-based 
(MRI) 

” Inception- 
ResNet-v2 

80.43 63.73 69.97 66.70 68.97 66.35 69.97 

Slice-based 
(MRI) 

2229 OASIS sagittal and axial images including 1742 NC. 340 very mild 
AD. 137 mild AD and 10 moderate AD 

AlexNet 94.17 90.76 89.50 90.13 89.37 90.09 89.50 

Slice-based 
(MRI) 

” ResNet-101 84.75 75.7 65.63 70.31 57.72 65.24 65.63 

Slice-based 
(MRI) 

” Inception- 
ResNet-v2 

95.07 86.15 93.16 89.52 92.83 88.02 93.16 

Slice-based 
(MRI) 

” Deep-Ensemble 96.02 87.01 94.09 90.04 93.76 88.90 94.09  

Fig. 8. Multiclass classification confusion matrix on the cross-data 
set experiment. 

Fig. 9. ROC curve for our deep-ensemble strategy on the cross-data set multi-
class experiment. 
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Concerning sensitivity and specificity, overall, most values are between 
90 and 100%. 

Models trained on OASIS were more accurate in classifying healthy 
cases than dementia cases, while some models trained on KAGGLE had 
higher sensitivity values than specificity values. The KAGGLE models 
trained on OASIS in axial sections were the least reliable in classifying 
positive cases, with sensitivity values between 33% and 66%. In 
contrast, models trained on ADNI were the most accurate in classifying 
positive and negative cases, with sensitivity and specificity values equal 
to 100%. 

As far as state of the art is concerned, this work has succeeded in 
making an important contribution to it. For binary classification on 
OASIS, the best result obtained in terms of accuracy was 99.44%, which 
is higher than the best-reported result of Hon et al. [60] (96.25%). 
Regarding multiclass classification on OASIS, the best result was ob-
tained by Mehmood et al. [69] (99.05%). The comparison, in this case, is 
not straightforward as the portion of the data set used is not specified. 
The present report made use of a substantially more significant number 
of images. However, in the case of the sagittal section, the best result 
obtained here was 100%; in the case of the frontal section, 91.30%; in 
both sections combined 94.17% was obtained. For the ADNI data set, 
Wang et al. [88] performed a multiclass classification on 355 images, 
obtaining a maximum accuracy of 98.88%. Our study achieved the 
classification on an initial set of 349 images and got the best results with 
ResNet-101 (100%) and GoogLeNet (97.14%). 

Finally, regarding the cross experiments, our deep-ensemble solution 
reached the highest performance either in the cross-data set one, with a 
96.02% accuracy, and in the fMRI case, with a 98.16 accuracy. 

5. Conclusions 

In this work, we investigated different deep learning techniques for 
AD diagnosis, employing transfer learning strategies to detect AD dis-
ease and differentiate different degrees of dementia, using distinct and 
heterogeneous data sets. The experimental results have allowed us to 
identify the most promising and performing networks for the addressed 
problems. Among the CNNs considered, also supported by comparisons 
with state of the art, we can select the ResNet-50 and ResNet-101 models 
as the most suitable solution to be used by transfer learning, both for 
binary and multiclass tasks without having to design ad hoc networks. 
However, considering the general scenario, we demonstrated that on 
three different MRI data sets, AlexNet, ResNet-101, and Inception- 
ResNet-v2 are suitable for the addressed issue. Considering their high 
performance, indeed, we exploited their features in combination with an 
ensemble bagging classifier, bringing significant improvements in every 
single experiment. Moreover, this performance motivates us to explore 
the behaviour of our proposed solution firstly in a cross-data set scenario 
and secondly in a data set composed of fMRIs, different biomarkers than 
MRIs. The cross-data set experiment permits us to demonstrate the 
robustness of the proposed method when the target domain is different 
from the source domain. At the same time, the investigation with fMRI 
biomarkers showed the method’s adaptability with different data sour-
ces. In both cases, the AD class reached high accuracy, with a reduced 
error margin. However, the MCI class is undoubtedly the most difficult 
to classify, with lower accuracy than the AD class. This problem is 
certainly due to the heterogeneity of the images representing the class in 
the two data sets exploited in the cross-data set experiments. At the same 
time, the heterogeneity of the four different MCI classes considered as 
grouped inside MCI, in the case of fMRIs, motivates this result. 

As a general rule, when deep and machine learning models are 
combined, both binary and multiclass classification can generally 
benefit, and in some cases, remarkably. 

Although the results obtained from our extensive experimentation 
and state-of-art comparisons on using deep learning techniques for AD 
diagnosis are more than satisfactory, we believe that research needs 
further developments before testing the models on real-world diagnoses. 

As a future direction, we aim to further improve the results obtained 
by investigating the possibility of combining the HC and CNN features, 
particularly to overcome the difficulties in recognising some classes and 
a feature selection step to reduce the dimensionality of the features. 

These could include a further refinement of the models, achieved by 
improving sensitivity and specificity where accuracy is high or testing 
them on new brain sections, such as the coronal. 

Moreover, an in-depth analysis of the cross-transfer learning work 
could be done by fine-tuning on a different data set than the first 
training. As an example, a possible cross could be between OASIS and 
ADNI in both directions. 

Also, new pre-trained models for standard transfer learning could be 
tested, as well as new biomarkers (e.g., PET), motivated by the excellent 
results obtained with fMRI ones. 

Finally, we think it is important to address the problem of unbal-
anced classes. There is a high disproportionate ratio of observations in 
some data sets in each category: in the problem managed, there are 
many more healthy cases than AD cases. Consequently, this issue could 
produce models with poor predictive performance for the minority 
classes. This motivated us to compute several appropriate metrics for 
class imbalance problems in the multiclass scenarios presented on the 
three MRI data sets and avoid the class imbalance by oversampling the 
poor classes thanks to augmentation strategies. 

In conclusion, our trial confirms that deep learning and transfer 
learning techniques can be valuable tools to detect AD from medical 
images. In particular, the deep-ensemble strategy we proposed can 
provide important indications in cross-data sets environments and with 
different biomarkers. However, there is still a long way to go before deep 
learning techniques can be used without medical supervision to accu-
rately detect AD. Although the available computer-aided systems can 
still not entirely replace a medical expert, they can already provide 
supporting information to improve the accuracy of clinical decisions, 
with a considerable potential benefit for patient management. 
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